A first-principles molecular dynamics approach for predicting optical phonon lifetimes and far-infrared reflectance of polar materials
نویسندگان
چکیده
The Lorentz oscillator model is well-known for its effectiveness to describe the farinfrared optical properties of polar materials. The oscillator strength and damping factor in this model are usually obtained by fitting to experimental data. In this work, a method based on first-principles simulations is developed to parameterize the Lorentz oscillator model without any fitting parameters. The high frequency dielectric constant is obtained from density functional perturbation theory, while the optical phonon frequencies and damping factors are calculated using an analysis of ab initio molecular dynamics trajectories. This method is then used to predict the far-infrared properties of GaAs, and the results are in good agreement with experimental data. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Infrared reflectance and transmission spectra in II-VI alloys and superlattices
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Room temperature measurements of the far-infrared (FIR) reflectance spectra are reported for the polar optical phon...
متن کاملAspect-ratio driven evolution of high-order resonant modes and near-field distributions in localized surface phonon polariton nanostructures
Polar dielectrics have garnered much attention as an alternative to plasmonic metals in the mid- to long-wave infrared spectral regime due to their low optical losses. As such, nanoscale resonators composed of these materials demonstrate figures of merit beyond those achievable in plasmonic equivalents. However, until now, only low-order, phonon-mediated, localized polariton resonances, known a...
متن کاملPhonon quasiparticles and anharmonic free energy in complex systems.
We use a hybrid strategy to obtain anharmonic frequency shifts and lifetimes of phonon quasiparticles from first principles molecular dynamics simulations in modest size supercells. This approach is effective irrespective of crystal structure complexity and facilitates calculation of full anharmonic phonon dispersions, as long as phonon quasiparticles are well defined. We validate this approach...
متن کاملAb initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride
Phonon and electron transport in Bi2Te3 has been investigated using a multiscale approach, combining the first-principles calculations, molecular dynamics MD simulations, and Boltzmann transport equations BTEs . Good agreements are found with the available experimental results. The MD simulations along with the Green-Kubo autocorrelation decay method are used to calculate the lattice thermal co...
متن کاملAb initio electron mobility and polar phonon scattering in GaAs
In polar semiconductors and oxides, the long-range nature of the electron-phonon (e-ph) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e-ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-depen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012